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C H A P T E R 1

UNITS AND VECTORS



Demo 01-01

Basic Units

The three basic quantities from which most other mechanical units are derived
are mass, length, and time. Physicists commonly prefer to use the system of
units known as SI (Systéme Internationale in French), or metric units. SI units
for these quantities are the kilogram for mass, the meter for length, and the
second for time. According to the reference volume A Physicist’s Desk
Reference, these units are defined as follows:

meter (symbol m): “The meter is the length of path travelled by light in vac-
uum during the time interval 1/299,792,458 of a second.”

kilogram (symbol kg): “The kilogram is the unit of mass, it is equal to the mass
of the international prototype of the kilogram.” (The international prototype is
a platinum-iridium cylinder kept at the BIPM in Sevres, France.)

second (symbol s): “The second is the duration of 9,192,631,770 periods of the
radiation corresponding to the transition between the two hyperfine levels of
the ground state of the cesium-133 atom.”

This video aims to help clarify the meter unit by comparing a meter stick with
the commonly used yardstick, which has been marked off in units of one inch.
A kilogram mass is also compared with a one-pound weight of the same
material.

Figure 1

The conversions between SI units and common
English units are:

1m=328ft =39.4 in
1ft=0305m  =30.5cm
1kg=221b

11b=0454kg =454g

t Herbert L. Anderson, Editor-in-Chief, A Physicist’s Desk Reference, The Second Edition of
Physics Vade Mecum (American Institute of Physics, New York, 1989), page 5.
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Basic Units / Script Demo 01-01

Physics makes use of a standard set of reference units for quantities such as
mass, length, and time.

Here are examples of the standard units and their modern methods of deriva-
tion.

The standard unit of mass is the kilogram, which can be calibrated only by
comparing it with a standard kilogram carefully maintained in a vault in
France, or duplicates made from the standard.

The standard unit of length is the meter, which is now defined in terms of the
distance light travels in a specific time interval approximately equal to one 300
millionth of a second.

For the purpose of comparison, here is the length of one yard. The standard
unit of time is the second, which is defined as the time required for a precise

number of periods of a type of radiation emitted by cesium atoms.

These three units combine to make up many of the other units commonly
used in physics.

Equipment

1. 1-kilogram mass and a 1-pound mass to compare.
2. 1 meter stick and 1 yardstick to compare.
3. 1 clock with a 1-second sweep hand.
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Demo 01-02

Figure 1

Vector Addition (Parallelogram)

Vector addition can be carried out either graphically or mathematically by
components. This graphics demonstration illustrates the “parallelogram rule,”
one method by which we can add vectors.

The two vectors to be added are translated without rotation so that their tails
touch, forming two sides of a parallelogram. The remaining sides of the paral-
lelogram are then constructed parallel to the two vectors. We can then draw
the vector sum of the two original vectors from the point at which the two tails
touch to the corner of the parallelogram opposite that corner, as shown in
Figure 1 and on the video for several different sets of vectors.

CHAPTER 1: UNITS AND VECTORS



Vector Addition (Parallelogram) / Script Demo 01-02

We'll use these animated vector arrows to demonstrate the parallelogram
method of adding vectors.

The vectors are positioned with their tails together, and a parallelogram is
formed by putting in lines that are parallel to and equal in length to each of
the vectors. The sum of the two vectors is the vector formed by drawing a line
from the tails across to the opposite corner of the parallelogram. As the angle
between the vectors changes, the magnitude of their sum changes from zero to
twice the magnitude of either vector.

Here is the same sequence repeated with vectors of unequal length.

Equipment

This demonstration is animated, but can be done with vector shapes mounted on magnets,
which in turn adhere to a ferrous blackboard.

CHAPTER 1: UNITS AND VECTORS 9



Demo 01-03 Vector Addition (Head to Tail)

Vector addition can be carried out either graphically or mathematically by com-
ponents. This graphics demonstration illustrates graphical addition of vectors
by the “head-to-tail” method. To add vectors graphically, the second vector is
translated without rotation and placed with its tail at the head of the first vector.
The sum is then drawn from the tail of the first vector to the head of the sec-
ond vector, as shown in Figure 1 and on the video for several sets of vectors.

Figure 1
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Vector Addition (Head to Tail) / Script Demo 01-03

We'll use these animated vector arrows to show a method of vector addition
called head to tail addition. If we want to add vector B to vector 4, we simply
move B so that its tail is in the same position as the head of A4, keeping it par-
allel to its original orientation at all times. The sum of the two vectors is found
by drawing a third vector from the tail of A to the head of B.

This is how the sum of the two vectors changes if vector B is rotated to dif-

ferent orientations. Since the two vectors are equal in magnitude, their sum
can have a magnitude ranging from zero to twice that of A and B.

Equipment

See Demonstration 01-02.
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Demo 01-04
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Vector Components

For purposes of vector mathematics, vectors may be broken down into their
components along the coordinate axes. For example, in the simple cartesian
coordinate system shown in Figure 1, vector A has components A.and A,
along the x and the y axes respectively. Components of an arbitrary vector are
shown in the video as the vector rotates about the origin.

CHAPTER 1: UNITS AND VECTORS



Vector Components / Script Demo 01-04

We'll use this animated vector arrow to show how a vector can be broken
down into components, and how those components vary as the angle of the
vector changes.

This vector can be broken down into two components, one along the x axis,
and one along the y axis.

Here’s how the components change as the vector is rotated around the origin.

Equipment

See Demonstration 01-02.

CHAPTER 1: UNITS AND VECTORS 13



Demo 01-05 Vector Dot Product

The scalar or dot product of two vectors is defined as:

C=AB=ABcos8,,

where 8,5 is the angle between the two vectors, and A and B are their magni-
tudes. The dot product is a scalar, and has a magnitude but not a direction.
When the angle between the two vectors is 90°, the dot product is zero. When
the angle between the two vectors is 0°, the magnitude of the dot product is
the product of the magnitudes of the vectors.

The dot product of two vectors is shown in the video as one vector rotates
while the other one remains at a constant orientation.

One of the more important examples in physics using the dot or scalar product
is work.

Figure 1

14 CHAPTER 1: UNITS AND VECTORS



Vector Dot Product / Script Demo 01-05

The dot product of two vectors is a scalar quantity which is equal to the prod-
uct of their magnitudes times the cosine of the angle between them.

We'll use these animated vectors to show how the dot product of two vectors
varies as the angle between the vectors changes.

Equipment

This demonstration is an animation.
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Demo 01-06

Figure 1
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Vector Cross Product

The vector or cross product of two vectors is defined as:
C= Ax B=ABsin0,,¢

where 8,5 is the angle between the two vectors and 4 and B are their magni-
tudes. Notice that C is a vector with the direction of the unit vector ¢, per-
pendicular to the plane of A and B. The direction of the cross product can be
obtained as follows: rotate a right-handed (standard) screw such that it rotates
from the vector 4 to the vector B through the smaller of the two angles be-
tween them. The screw will then drive in the direction of the cross product
vector. Equivalently, if you curl the fingers of your right hand in the direction
from 4 to B through the smaller of the angles between the vectors, your
thumb will point in the direction of the vector product.

Another variation of the right hand rule for vector cross product is illustrated in
Figure 1: Using the fingers on your right hand, if the index finger points in the
direction of vector 4 and your middle finger points in the direction of vector
B , then the thumb will point in the direction of the cross product C .

When the angle between the two vectors is
either 0° or 180°, the cross product is zero.
When the angle between the two vectors is 90°,
the magnitude of the cross product is the prod-
uct of the magnitudes of the two vectors.

The cross product of two vectors is shown in
the video as one of the two vectors rotates
around the origin while the other remains fixed.

Examples of the cross product in physics

include torque and the magnetic force on a
moving charged particle.
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Vector Cross Product / Script Demo 01-06

We'll use these animated vector arrows to show how the cross product of two
vectors varies as the angle between them is changed.

The cross product of these two vectors, A and B, is a vector at right angles to
both. Its direction can be found using the right-hand rule.

The magnitude of a cross product of two vectors is equal to the product of
their magnitudes times the sine of the angle between them.

Here’s how the cross product of 4 and B changes as the angle between them
is changed.

Equipment

This demonstration is an animation.
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Demo 01-07

Figure 1
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3-D Vector Components

This demonstration extends the vector concept of Demonstration 01-04 to
three dimensions. The video shows several vectors in three dimensions on an
x-y-z cartesian coordinate system of axes.

The orientation of the vector is now defined by three angles, the angles be-
tween the vector and each of the three axes. Notice that the angle between the
vector and any axis is not the same as the projection of that angle on any one
of the three planes containing two axes.

The apparatus used in the demonstration is shown in Figure 1, viewing along
the x axis, so that the y and the z components are apparent.
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3-D Vector Components / Script Demo 01-07

This metal frame is a model of a three-dimensional coordinate system, with x,
¥, and z axes.

A vector that is anchored at the origin is free to move in the volume defined
by the three axes.

We'll move it to different positions in the frame and look at the model along
each of the three axes to show the components of the vector on those axes.

When we look along the z axis, we see the components of the vector in the x
and y axes.

Looking along the y axis shows the components along the x and z axes.
Looking along the x axis shows the components along the y and z axes.

Now we’ll change the position of the vector in the frame and repeat the se-
quence.

Equipment

A model vector coordinate system with a resultant vector that is free to move in space is used
for this demonstration.

CHAPTER 1: UNITS AND VECTORS 19
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LINEAR KINEMATICS
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LINEAR KINEMATICS

The demonstrations in this chapter have been chosen primarily to illustrate the
concepts of motion with constant velocity and motion with constant accelera-
tion, including the addition of velocities along a line.

For the case of constant acceleration &, the velocity v can then be determined
as a function of time # '

v(t)=v, +at
where the initial velocity is v at time #=0. The position x as a function of time
is then

1
x()=x, +v,t +Eat2

where the initial position is x at time 7=0.

An additional useful relationship can be derived between the position and the
velocity:

v* () -0} =2a(x —xo)

For the simplified case of motion starting with x =0 at time t=0 and zero
velocity, these equations simplify to:

v(t) =at
x(1) =1m‘2
2
02 (1) =2ax

t These equations are discussed in detail in several physics texts, for example, Halliday, Resnick,
and Walker, Fundamentals of Physics, Extended Fourth Edition, Chapter 2, Sections 1-7.
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Demo 01-08 Constant Velocity

This demonstration illustrates constant velocity using an air track glider. For the
case of constant velocity, the distance traveled by the glider in equal time
intervals is the same, which can be seen by marking the position of the glider
on the video screen at a series of equal time intervals.

Each end of the air track is fitted with spring bouncers. This ensures that the
glider collides elastically with the end of the air track, so that its speed is the
same but its direction is reversed, changing the velocity vector from +v to —v .

- EIEZ13

Figure 1
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Constant Velocity / Script Demo 01-08

We'll float this glider on a cushion of air to reduce the friction which normally
slows down moving objects. After the glider is pushed, it moves smoothly
down the track until it hits the bumper at the end.

These dots will track the motion of the glider every half second to record the
glider’s position vs. time. What does the spacing of the dots tell us about the
glider’s velocity?

Since the spacing between dots is constant, the velocity of the glider must be
constant. What happens to the velocity when the glider strikes the end of the
track?

As this vector representation shows, when the glider strikes the end the veloc-

ity is reversed in direction, but the magnitude, or speed, is the same. Here is
the glider moving at a higher velocity.

Equipment

1. Level air track.
2. Blower system.
3. Heavy glider.
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Demo 01-09

Figure 1

26

Bulldozer on Moving Sheet

This experiment demonstrates addition and subtraction of velocities along a
line using two toy bulldozers and a paper sheet.” One bulldozer moves with a
constant velocity v; over the table. The second bulldozer moves with the same
constant velocity v, on a paper sheet that can be moved along the same line as
the velocity of the bulldozer. This arrangement is shown in Figure 1.

If the paper sheet remains at rest, the two bulldozers move along together in
the same direction at velocities of v;. If the paper sheet is pulled with a ve-
locity v, in the same direction as the bulldozer, the velocity of the bulldozer in
the laboratory frame of reference will increase to v;+ v,. If the paper sheet is
pulled with the same speed in the opposite direction, the velocity of the bull-
dozer in the laboratory frame will decrease to v;— v,.

t Freier and Anderson, A Demonstration Handbook for Physics, Demonstration Mb-30, Relative
Velocity.
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Bulldozer on Moving Sheet / Script Demo 01-09

We'll use this pair of toy bulldozers, which run at constant speed, to demon-
strate how velocities add and subtract.

This bulldozer is running on a stationary tabletop.

A second bulldozer which runs at the same velocity is placed next to the first,
but on top of a paper sheet which can also be moved at a constant velocity.

If we move the sheet along the table in the same direction as the bulldozers,
how will the velocity of the second bulldozer compare with the bulldozer on
the table?

When the sheet moves in the same direction as the bulldozer moves, the ve-
locity of the sheet is added to that of the bulldozer so it runs faster than the

one on the table. If we move the sheet in the opposite direction as the bull-
dozer, its velocity relative to the table is decreased.

Equipment

1. Two battery-powered toy bulldozers.
2. Long sheet of paper or plastic with evenly spaced grid markings.
3. Rollers for sheet if desired—can be held by hand.

CHAPTER 2: LINEAR KINEMATICS 27



Demo 01-10

28

Rolling Ball Incline

In this demonstration a ball is rolled down an incline, illustrating motion with a
constant acceleration. Lights located at carefully chosen points along the incline
flash once per second, marking the position of the ball at one-second intervals."
The system is set up so that the first flash occurs at time =0, just as the ball is
released. Figure 1 is a graph of position x versus time ¢ for the rolling ball. By
taking the difference between positions for two successive one-second time
intervals, we obtain the mean speed of the ball as a function of time and plot
it in Figure 2. Using measured x(%) values at time intervals of one second,

A
Ax, =x(1)—-x(0)=x(1) v, = 1x1
S
A
Ax, =x(2)=x(1) v, =22
1s
Dox s =x(3) =x(2) As
X, =X -X vV, =——
3 3 1s
A
Ax, =x(4)-x(3) v, =%

Taking the difference between speeds for two successive one-second intervals,
we obtain the acceleration as a function of time and plot it in Figure 3.

Av

Mo, =v, -0, a,=—2=
1s

_ IAUE
Av, =v; -0, a, =—=
1s

Av

. _buy
DAvy=v,-v, ay=—-
1s

t Sutton, Demonstration Experiments in Physics, Demonstration M-77, Timed-interval Inclined

Plane, page 39.

CHAPTER 2:
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Rolling Ball Incline

When plotting the values of x and v versus ¢, we take care to plot each value

at

the center of the time interval covered. Thus vy is plotted at #="%s, v, is plot-

ted at #=1%2s and so forth; a is plotted at t=1s, a, is plotted at t=2s, and so
forth, as indicated in Table I.

For this case the acceleration a is constant, so the velocity v increases linearly
with time,

v=at

and the position of the ball increases quadratically with time, so the position
versus time graph is a parabola:

X =—at
2

Table I
t (sec) x (units) v (units/s) a (units/sz)
0.0 0
0.5 1
1.0 1 2
1.5 3
2.0 4 2
2.5 )
3.0 9 2
3.5 7
4.0 16
Equipment
1. Inclined track with lights positioned at one, four, nine, sixteen, and twenty-five units,

B

equipped with a ball catcher at far end of track.

A timing/release mechanism to permit the ball’s rolling descent to begin at the same moment
that the lights flash in unison.

A steel ball.

Magnetic strips of appropriate lengths to show all d’s, Ad’s, and Av's.

Ferrous background for graphic display of strips.

CHAPTER 2: LINEAR KINEMATICS
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Demo 01-10 Rolling Ball Incline

TIME (SEC)

Figure 1

TIME (SEC) TIME (SEC)

Figure 2 Figure 3
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Rolling Ball Incline / Script

A ball rolling down a long incline will be used to show how position, velocity,
and acceleration of the ball change as it moves down the incline.

Five lights arranged along the length of the track flash simultaneously once per
second.

As the ball rolls down it is directly above each of the lights just as they flash. This
gives us a record of the positions of the ball at one-second intervals.

This is how far the ball traveled in the first second.

This is how far the ball traveled in the first two seconds.

Three seconds.

Four seconds.

We will move this distance up to a graph to keep track of position vs. time.
Does position change linearly over time?

Next we will graph the average velocity of the ball during five different inter-
vals to see how velocity varies as the ball rolls down the incline. The ball
moved this far during the first second.

It moved this far during the next second.

This far during the third second.

The fourth second.

This gives us a graph of the velocity of the ball over time. Does velocity in-
crease linearly?

Now we will graph the changes in velocity vs. time by graphing the differ-
ences in successive velocities.

What does this tell us about the acceleration of the ball?

The acceleration is constant.

CHAPTER 2: LINEAR KINEMATICS
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Demo 01-11

Figure 1
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Constant Acceleration

In this demonstration an air track is tilted to provide constant acceleration of
the glider. By marking the position of the glider at a series of equal time in-
tervals, we can obtain the value of the acceleration using a technique similar to
that of Demonstration 01-10.

For actual measurements the position of the glider can be measured directly or

you may use its position at one-half second intervals, as shown in the video. In
this case the acceleration a is

a=gsinf

where g is the acceleration of gravity and 8 is the angle the air track makes
with respect to the horizontal. Therefore, the linear speed v of the glider is

v=at= (g sin B)z‘

and the position x as a function of time is

1 1, . 2
X = Eatz = E(g sin G)Z

The three angles at which the air track is tilted for the cases shown in the
video are 0.70°, 1.15° and 1.60°.

CHAPTER 2: LINEAR KINEMATICS



Constant Acceleration / Script Demo 01-11

We will use a nearly frictionless air track with a glider floating on an air cush-
ion to demonstrate accelerated motion.

When the track is level, a push is required to move the glider. It then moves at
a constant velocity as shown by these dots that track the position of the glider

at half-second intervals.

When we tilt the track by placing a 1-centimeter high shim under one end, the
glider moves down the track.

What can we say about the magnitude of the velocity in this case?

The glider’s velocity increases with time—it accelerates. If we increase the tilt
of the track by doubling the height of the shim, the acceleration increases.

When the shim height is increased to 3 centimeters, the acceleration increases
again.

This split-screen view shows the glider accelerating at all three angles of tilt.

Equipment

Level air track.

Blower system.

Heavy glider.

Multiple spacing shim to incline track.

LS
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Demo 01-12

Figure 1

34

String and Weights Drop

In this demonstration the geometrical nature of the distance versus time curve
for the case of constant acceleration is shown.! Two strings are dropped verti-
cally, one with weights attached at equal intervals and one with weights at-
tached at intervals spaced geometrically, as shown in Figure 1. By listening to
the time sequence with which the weights hit the floor, we can verify that the
distance versus time curve for falling bodies under the constant acceleration of
gravity is a parabola.

In the case of constant acceleration of gravity g,

] 180 cm

a=g

the velocity versus time for freely falling bodies
is

v=gt

and the distance versus time is

I >
§=—gt
Zg

SO
\/Z
t=.=—
8
For the case of weights attached at equal distances along the string, the inter-
vals between times when the weights hit the floor are shown in Table I. For
the case of weights attached at distances along the rope in ratios of 1:4:9:16:25

the intervals between times when the weights hit the floor are equal, as shown
in Table II.

t Sutton, Demonstration Experiments in Physics, Demonstration M-84, Freely Falling Bodies.
Meiners, Physics Demonstration Experiments, Section 7-1.12, Freely Falling Bodies, page 113.
Freier and Anderson, A Demonstration Handbook for Physics, Demonstration Mb-12, Time
Intervals of Fall.
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String and Weights Drop

Table I Table 1T
s (cm) t(s) At (s) s (cm) t(s) At (s)
0 0.000 0 0.000
25 0.226 0.226 5 0.101 0.101
50 0.319 0.093 20 0.202 0.101
75 0.391 0.072 45 0.303 0.101
100 0.452 0.061 80 0.404 0.101
125 0.505 0.053 125 0.505 0.101
150 0.553 0.048 180 0.606 0.101

String and Weights Drop / Script

On the left is a string with small weights tied at regular increasing heights
above the ground. We’ll drop the string and listen to the sound as each weight
strikes a board at the bottom.

When the string is dropped, the weights strike the board in decreasing inter-
vals of time.

On this string, the height of the weights increases geometrically.

When this string is dropped, the weights strike the board at equal intervals of
time.

Equipment

1. A string tied with equally spaced weights.

2. A string tied with weights with geometrically increasing spacing.

3. A board on which one can drop the two series of weights and utilize the emitted sound to
judge the time intervals of the weights striking the board.

CHAPTER 2: LINEAR KINEMATICS

Demo 01-12

Demo 01-12

35



Demo 01-13 Reaction Time Falling Meter Stick

In this demonstration a meter stick is used to determine the reaction time of a
human subject.” The experimenter holds the meter stick vertically by the top
end with the subject’s hands even with the 50-cm mark on the meter stick,
ready to catch the meter stick when it is dropped, as shown in Figure 1. The
experimenter then drops the meter stick. The distance the meter stick falls be-
fore it is caught by the subject is used to determine the reaction time of the
subject.

The equation relating distance and time for the case of free fall is

1 >
Ss=—gt
28

so after observing how far the meter stick fell, the reaction time can be calcu-
lated as

= “’T_S
Ve

If the tops of the subject’s hands are initially aligned with the 0-cm end mark
of the meter stick, s can be read directly off the meter stick, and converted to
time using Table I.

Figure 1
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Reaction Time Falling Meter Stick

Table I

s (cm) t (ms) s (cm) t (ms) s (cm) t (ms) s (cm) t (ms)
1 45 14 169 27 235 40 286
2 64 15 175 28 239 41 289
3 78 16 181 29 243 42 293
4 90 17 186 30 247 43 296
5 100 18 192 31 252 44 300
6 111 19 197 32 256 45 303
7 120 20 202 33 260 46 306
8 128 21 207 34 263 47 310
9 136 22 212 35 267 48 313
10 143 23 217 36 271 49 316
11 150 24 221 37 275 50 319
12 156 25 226 38 278

13 163 26 230 39 282

Reaction Time Falling Meter Stick / Script

When a meter stick is dropped, the distance it has fallen increases with time.
We'll use that fact to measure the time it takes a person to react after a meter
stick is dropped.

One person holds a meter stick vertically while a second person waits with her

fingers poised at the 50-centimeter mark on the stick. The stick will be

dropped unexpectedly and the second person will try to catch it as quickly as
possible.

The distance the stick falls before it is caught will show how quickly the sec-
ond person reacted after the meter stick was released.

This is how far the meter stick fell before it was caught. What is this person’s

reaction time?

Equipment

1. Meter stick.
2. Two demonstrators; one to drop, one to catch.

CHAPTER
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Demo 01-14 Guinea and Feather

This is the classic demonstration showing that the acceleration of free fall is
independent of mass, in the absence of other significant forces such as air fric-
tion." A metal disc and a small piece of paper are placed inside two identical
vertical glass tubes, and the tubes are rapidly rotated so the objects remain
stuck at one end. When the tubes are upside down, the disc and the paper
begin to fall to the lower end. Due to air drag the paper falls more slowly than
the disc. When the air is pumped out of the tube, the disc and the paper fall
with the same acceleration and reach the bottom end of the tube at the same
time.

Figure 1

t Sutton, Demonstration Experiments in Physics, Demonstration M-79, Guinea-and-Feather Tube.
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Guinea and Feather / Script Demo 01-14

We are used to seeing light objects fall more slowly than heavy objects. But
why do light and heavy objects fall differently?

We will use this pair of tubes containing metal and paper discs to show the
effect of eliminating air resistance. This is how the objects fall when the tubes

are filled with air.

If we now remove most of the air from the tubes with a vacuum pump and
repeat the demonstration, the results change dramatically.

Equipment

1. Guinea and feather tube—sealed and equipped for evacuation.
2. Vacuum pump.
3. Perhaps a light and heavier object to drop through open atmosphere as a comparison.
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Demo 01-15 String and Weight Acceleration

This experiment, sometimes called a horizontal Atwood’s machine, involves ac-
celeration of an air track glider by a small mass attached to the glider by a
string passing over a pulley.

The gravitational force on the small hanging mass provides the force to accel-
erate the glider, as seen using the free body diagram of Figure 1, giving the
equations:

mg —T=ma
T=Ma
where T'is the tension in the string, M is the mass of the glider, m is the mass
of the small hanging mass, a is the acceleration of the system, and g is the ac-

celeration of gravity. The acceleration a of the system can then be obtained by
eliminating T

Like the standard Atwood’s machine, the system
thus moves with a constant acceleration. The

T acceleration of the system can be determined
_— experimentally using the difference method of
Demonstration 01-10.

Three cases are shown in the video:

(D) glider mass M with accelerating mass 2.
L 4 (2) glider mass M with accelerating mass 2m.
mg (3) glider mass 2M with accelerating mass m.

m If m < M, the acceleration becomes

_m
Figure 1 a= ﬂg

so, to a good approximation, relative to the original case (1) the acceleration
will double for case (2) and halve for case (3).

For the experiment shown on the video, the accelerating mass m = 3.3 grams
and the glider mass M = 200 grams.

t Sutton, Demonstration Experiments in Physics, Demonstration M-108, Acceleration on a
Horizontal Plane, page 50.
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String and Weight Acceleration / Script

If a string hanging over a pulley is loaded with a small weight, it provides a
force which can accelerate a glider floating on a cushion of air.

Here is the same acceleration, with the position of the glider marked by dots at
half-second intervals.

If the force is doubled by doubling the hanging mass, how will that affect the
acceleration of the glider?

The dots are more widely spaced, so the acceleration has increased.

If the same hanging weight is now used but the glider’s mass is doubled, how
will the acceleration change?

Here is the new acceleration.

Here are all three accelerations and the force and mass data for each.

Equipment

Level air track.

Blower system.

Glider.

Two low-friction pulleys.

Very lightweight length of string.

A supply of paper clips.

Support system for pulleys.

Appropriate masses to double the glider’s weight.
Perhaps a stopwatch to measure the time of fall.

R AR S
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Demo 01-16

Atwood’s Machine

The classical Atwood’s machine,” consisting of two masses hanging on a light
string over a light, frictionless pulley, is used to study force and acceleration. If
the masses are nearly equal, the motion may be slow enough that accurate
measurements can be made. We can do this by using large masses on each
side and increasing the mass on one side by adding a smaller rider.

For such a system, shown in Figure 1, we can formulate the equation of mo-
tion by considering the free-body drawings for each side.

(M +m)g :T+(M +m)a

Mg =T —Ma

where M is the larger mass on each side, m is
the lighter mass of the rider, T is the tension in
the string, a is the acceleration of the system,
and g is the acceleration of gravity. Eliminating
T, the equation of motion is

T a m

_2M+mg

Thus the two-mass system will move with a

M (M+m)g constant acceleration, with the side with the

rider moving downward.

M+m

Figure 1

44

We can determine this acceleration experimen-
tally by using the difference method discussed
in detail in Demonstration 01-10, where the position of either weight can be
measured at a series of equal time intervals. A 10-cm grid is provided at the
right of the Atwood’s machine for determination of the vertical scale.

In the video the net weight m is removed while the system is accelerating,
causing the acceleration to cease and resulting in constant velocity for the sys-
tem after that point. This can also be verified experimentally by determining
the position of either weight at equal time intervals after the small net weight
is removed.

t Sutton, Demonstration Experiments in Physics, Demonstration M-110, Atwood’s Machine, pages
50-51.
Meiners, Physics Demonstration Experiments, Section 8-1.4, page 137.
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Atwood’s Machine / Script Demo 01-16

This device is known as an Atwood’s machine.
Two equal masses hang on either side of a string passing over a pulley. Since
the masses are equal, there is no net force to accelerate the masses and they

are in equilibrium in any position.

A small rider is now added to one of the large masses, and the system begins
to move.

How could we best describe this type of motion?
Since there is a constant unbalanced force on the system, it is accelerated.
The traces left behind each half-second in this segment show the acceleration.

If the mass now passes through this ring so that the rider is picked off, how
will the motion of the masses be affected?

The masses now move with a constant velocity.

Here is the same sequence repeated with two riders added to the large mass.

Equipment

A very low-friction pulley.

Lightweight length of string.

Two masses of equal weight.

Two relatively small rider weights to take the system out of static balance.

A catch system for the riders so that they are lifted off without disturbing the linear
downward motion.

A stopwatch/clock.

A two-meter stick.

RIS
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Demo 01-17

Figure 1

46

Acceleration with Spring

The horizontal Atwood’s machine and the Atwood’s machine (Demonstrations
01-15 and 01-16) are two devices that apply a constant force to a system to
produce constant acceleration. A third technique is illustrated in this demon-
stration.

A flexible spring is attached to the front of an air track glider, and the glider is
pulled along the track so that the spring remains stretched to a constant length
as shown in the video, and in Figure 1.

1I|::|at:|::|?
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Acceleration with Spring / Script Demo 01-17

We will use a glider floating on a cushion of air and a light spring to demon-
strate how a constant force from a spring can accelerate the glider.

The spring is attached to the end of the glider, and a marker stick is attached
to the top of the glider to indicate the extension of the spring.

When the spring is pulled out, it pulls on the glider with a constant force. The
force from the spring accelerates the glider. Here is the same acceleration re-
peated, with dots on the screen recording the position of the glider every half
second.

Equipment

Level air track.

Blower system.

Heavy glider with extended marker bar.

Two low-friction pulleys.

Very lightweight spring with a small spring constant.

RAIE G .
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Demo 01-18

Figure 1

48

Dropped Slinky

A Slinky spring is held by one end and allowed to hang freely in a line directly
under the point of support. If it is released from rest, what will the Slinky do?
Will the entire Slinky accelerate down? Will the bottom end of the Slinky begin
to accelerate downward, accelerate upward, or remain at the same position?

The Slinky spring begins to fall downward immediately after it is released, si-
multaneously shrinking due to the internal forces, which are no longer bal-
anced by the force of the hand holding the Slinky and the force of gravity.

The motion of the collapsing Slinky has been recorded on high-speed film,
and is presented in slow motion so that the details of the collapse mechanism
can be studied.
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Dropped Slinky / Script Demo 01-18

When this spring is held at the top and allowed to hang, the weight of the
spring stretches it out. If we release the spring, its weight will still be pulling
on it during the fall. What will happen to the length of the spring during the
fall?

The spring immediately contracts when it is dropped.

Equipment

One Slinky.
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Demo 01-19

Figure 1

50

Candle in Dropped Jar

This demonstration illustrates the state of apparent weightlessness in free fall in
the earth’s gravitational field. When a candle burns, it is dependent on rising
convection currents in the air around it to carry the hot combustion products
up away from the candle and deliver new air with oxygen from below to the
burning wick, as illustrated in Figure 1. Convection currents are dependent on
gravity because the hotter combustion products are also lighter than the sur-
rounding air and therefore will rise due to their buoyancy in the more dense
air.

A candle is placed inside a sealed jar containing enough air to keep the candle
burning for a relatively long time. However, when the jar is dropped, and falls
freely with the acceleration of gravity, the candle immediately goes out." In the
frame of reference of the falling jar a state of apparent weightlessness exists,
causing convection currents to cease and removing the supply of oxygen to
the flame.

This is true weightlessness according to General Relativity.

t Sutton, Demonstration Experiments in Physics, Demonstration M-98, Freely Falling Candle,
page 46.
Bassam Z.Shakhashiri, Chemical Demonstrations—A Handbook for Teachers of Chemistry ,
Volume 2, Combustion of a Candle in Air, Section 6-13, pages 158-161.
Meiners, Physics Demonstration Experiments, Section 8-3.7, page 146.
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Candle in Dropped Jar / Script Demo 01-19

If we light a candle and place it inside a glass jar, there is enough oxygen in
the jar to let the candle burn for over 10 seconds.

Moving the jar rapidly from side to side does not have a great effect on the
flame because the jar protects the flame from the wind caused by the motion.
But what will happen if we relight the candle and drop the jar from a height of
ten feet?

The flame goes out on the way down. When the jar is in free fall, there are no
convection currents to bring fresh oxygen up into the flame.

Equipment

Quart jar.

Candle affixed to inside surface of jar’s lid.
Source of flame.

Catching device to protect glass jar.

LS
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