REFERENCES
REFERENCES SECTION G
G1: SIMPLE HARMONIC MOTION
- G1-01: EXAMPLES OF SIMPLE HARMONIC MOTION
- THE PENDULUM
- D. A. Wells, A Demonstration Laboratory for Advanced Dynamics, AJP 13, 147-15, (1945).
- George E. Owen and Daniel C. McKown, An Experiment Illustrating the Elliptic Integral of the First Kind, AJP 19, 188, (1951).
- James L. Anderson, Approximations in Physics and the Simple Pendulum, AJP 27, 188-189, (1959).
- Harry H. Denman, Amplitude-Dependence of Frequency in a Linear Approximation to the Simple Pendulum Equation, AJP 27, 524-525, (1959).
- Malcolm K. Smith, Precision Measurement of Period vs Amplitude for a Pendulum, AJP 32, 632-633, (1964).
- Seung-Ping Li and Shih-Yu Feng, Precision Measurement of the Period of a Pendulum Using an Oscilloscope, AJP 35, 1071-1073 (1967).
- Douglas J. Haddad, Simple Pendulum Experiment, AJP 36, 273, (1968).
- Madan L. Gupta, The Critical Points of a Simple Pendulum, AJP 40, 478-480 (1972).
- Eli Maor, A Repertoire of S. H. M., TPT 10, 377-382, (1972).
- B. J. Miller, More Realistic Treatment of the Simple Pendulum without Difficult Mathematics, AJP 42, 298-303 (1974).
- W. L. Alford, Approximation for Horizontal Motion of a Plane Pendulum, AJP 42, 417-418 (1974).
- C. C. Yan, Generation of simple harmonic motions, AJP 50, 940-943 (1982).
- Bruse Demardo and Richard Masada, A Not-So-Obvious Pendulum Experiment, TPT 28, 51-52, (1990).
- L. H. Cadwell and E. R. Boyko, Linearization of the simple pendulum, AJP 59, 979-981 (1991).
- Vincent Santarelli, Joyce Carolla, and Michael Ferner, A New Look at the Simple Pendulum, TPT 31, 236-238 (1993).
- Raymond W. Mires and Randall D. Peters, Motion of a leaky pendulum, AJP 62, 137-139 (1994).
- Takashi Araki, Measurement of simple pendulum motion using flux-gate magnetometer, AJP 62, 569-571 (1994).
- T. FF. Zheng, M. Mears, D. Hall, and D. Pushkin, Teaching the Nonlinear Pendulum, TPT 32, 248-251 (1994).
- Cindy Schwartz, The Not-So-Simple Pendulum, TPT 33, 225-228 (1995).
- David P. Jackson, Rendering the "Not-So-Simple" Pendulum Experimentally Accessible, TPT 34, 86-89 (1996).
- APPLICATION TO CLOCKS
- Douglas A. Bateman, ACCURACY OF PENDULUMS And Many Factors That Influence It, National Association of Watch and Clock Collectors Bulletin Vol. 36 #3, pp 300-312 (June 1994).
- John E. Carlson, The Pendulum Clock, TPT 29, 8-11 (1991).
- THE MASS ON SPRING SYSTEM
- John W. Dewdney, Simple Pendulum Equivalent to Spring-Mass System, AJP 26, 341-341, (1958).
- Francis W. Sears, A Demonstration of the Spring-Mass Correction, AJP 37, 645-648 (1969).
- Eduardo A. Jagla and Diego A. R. Dalvit, Null-lenght springs: Some curious properties, AJP 59, 434-436 (1991).
- J. M. Nunes da Silva, Renormalization vibrations of a loaded spring, AJP 62, 423-426 (1994).
- THE PHYSICAL PENDULUM
- Joseph Priest and Larry Potts, Computer Analysis of a Physical Pendulum, TPT 28, 413-415, (1990).
- Charles J. Reidl, Jr., Moment of Inertia of a Physical Pendulum, TPT 34, 114-115 (1996).
- Alan Cromer, Many oscillations of a rigid rod, AJP 63, 112-121 (1995).
- James E. Kettler, A variable mass physical pendulum, AJP 63, 1049-1051 (1995).
- David A. Giltinan, David L. Wagner, and Thomas A. Walkiewicz, The physical pendulum on a cylindrical support, AJP 64, 144-146 (1996).
- EXOTIC HARMONIC OSCILLATORS
- Jorge B. Sztrajman, An exotic harmonic oscillator: The frequency depends on initial conditions, AJP 58, 159-160 (1990). Note missing plus sign in equation (5).
- William T. Doyle, Comment on "An exotic harmonic oscillator," by J. B. Sztrajman [Am. J. Phys. 58, 159-160 (1990)], AJP 59, 373-374 (1991).
- Alan Cromer, The x^3 Oscillator, TPT 30, 249-250 (1992).
- John Kroening, Letter: Question about x^3 oscillator, TPT 30, 326 (1992).
- Chris Hirata and David Thiessen, The Period of F=-kx^nx Harmonic Motion, TPT 33, 562-564 (1995).
- A. Dobrovolskis, Rubber Band Pendulum, AJP 41, 1103-1105 (1973).
- Allen L. King, Oscillations of a Loaded Rubber Band, AJP 42, 699-701 (1974).
- Bruce Denardo and Richard Masada, A Not-So-Obvious Pendulum Experiment, TPT 28, 51-52 (1990).
- George Matous and John Matolyak, Teaching Important Procedures with Simple Experiments, TPT 29, 541-542 (1991).
- Thomas A. Walkiewicz and David L. Wagner, Symmetry Properties of a Ring Pendulum, TPT 32, 142-144 (1994).
- David L. Wagner, Thomas A. Walkiewicz, and David A. Giltinan, The partial ring pendulum, AJP 63, 1014-1017 (1995).
- G1-11: COMPARISON OF SHM AND UCM
- D. M. Bennett, Apparatus for the Demonstration of Simple Harmonic Motion, AJP 30, 470 (1962).
- G1-12: PENDULUM AND ROTATING BALL
- None.
- G1-13: MASS ON STRING
- None.
- G1-14: PENDULA WITH DIFFERENT MASSES
- None.
- G1-15: PENDULA WITH 4 TO 1 LENGTH RATIO
- None.
- G1-16: PENDULA WITH LARGE ANGLE OSCILLATION
- George E. Owen and Daniel C. Mckown, An Experiment Illustrating the Elliptic Integral of the First Kind, AJP 19, 188, (1951).
- James L. Anderson, Approximations in Physics and the Simple Pendulum, AJP 27, 188-189, (1959).
- Harry H. Denman, Amplitude-Dependence of Frequency in a Linear Approximation of the Simple
Pendulum Equation, AJP 27, 524-525, (1959).
- Malcolm K. Smith, Precision Measurement of Period vs. Amplitude for a Pendulum, AJP 32, 632-633, (1964).
- Douglas J. Haddad, Instructional Uses of the Computer: Simple Pendulum Experiment, AJP 36, 273, (1968).
- G1-17: PENDULA WITH LARGE ANGLE OSCILLATION - PORTABLE
- None.
- G1-18: PENDULA WITH FORCE SCALE
- None.
- G1-19: CARTESIAN COORDINATES OF CIRCULAR
MOTION
- None.
- G1-31: HOOKES LAW AND SHM
- Lecture Demonstration Records Sheet.
- Exerts from Physics 117 lab.
- G1-32: MASS ON SPRING - WITH STAND
- Clifton Bob Clark, Vibrating Spring Experiment, AJP 25, 322-323 (1957).
- Herman Erlichson, The Verical Spring-Mass System and Its "Equivalent," TPT 14, 573-574, (1976).
- F. Alan McDonald, Deceptively Simple Harmonic Motion, A Mass on a Spiral Spring, AJP 48, 189-192, (1980).
- Robert L. Wildey, A Correction for a Spring Mass in the Ubiquitons Centripetal Force Experiment of Freshman Physics, AJP 57, 1098-1102, (1989).
- Ernesto E. Galloni and Mario Kohen, Influence of the Mass of the Spring on Its Static and Dynamic Effects, AJP 47, 1076-1078, (1979).
- T. W. Edwards and R. A. Hultsch, Mass Distribution and Frequencies of a Verical Spring, AJP 40, 445-449, (1972).
- J. G. Fox and J. Mahanty, The Effective Mass of an Oscillating Spring, AJP 38, 98-100, (1970).
- P. Mohazzabi and J. P. McCrickard, On the Spring Constant of a Close-Cooled Helical Spring, AJP 57, 639-641, (1989).
- F. J. Milford, A Simple Mechanics Problem, AJP 23, 385-386, (1955).
- F. W. Sears, A Demonstration of the Spring-Mass Correction, AJP 37, 645-648, (1969).
- G1-33: MASSES AND SPRINGS WITH SPIDER
- None.
- G1-34: AIR TRACK- SIMPLE HARMONIC MOTION
- None.
- G1-35: MASS ON SPRING - EFFICIENT MODEL
- None.
- G1-41: TORSIONAL PENDULUM
- Apparatus Description, Order No. 110611, Klinger Scientific Co., Jamaica, NY.
- G1-42: LARGE TORSIONAL PENDULUM
- Directions for use of Cat. No. 75260 Torsion Pendulum, Central Scientific Co., Chicago, Ill.
- G1-43: KLINGER TORSIONAL VIBRATION MACHINE
- Apparatus Description, Order No. 110611, Klinger Scientific Co., Jamaica, NY.
- G1-51: INVERTED PENDULUM SPRING
- George W. Horton, A Pendulum of Sorts, AJP 35, 65-66, (1967).
- G1-52: STRINGLESS PENDULUM
- Daniel T. Gillespie, Simple Harmonic Motion Of a Round Body Rolling on a Concave Curve, AJP 52, 180-182, (1984).
- G1-53: SHM - CAN IN WATER TANK
- Lecture Demonstrations Information Sheet with Calculations.
- G1-54: MASS'S DOUBLE PENDULUM
- None.
- G1-55: INERTIA BALANCE
- William Schriever, A New Inertia Balance and Operational Definition of Mass, AJP 5, 202-205, (1937).
- Selective Experiments in Physics, Dynamical Comparison of Masses, Central Scientific Co., Chicago, Ill. (1940).
- Lecture Demonstrations Records Form.
- Apparatus Description, Cenco-Schriever Inertia Balance
- G1-56: INVERTED PENDULUM - SABER SAW
- F. M. Phelps, III and J. H. Hunter, Jr., An Analytical Solution of the Inverted Pendulum, AJP 33, 285-295, (1965).
- Leon Blitzer, Inverted Pendulum, AJP 33, 1076-1078, (1965).
- S. G. Joshi, Inverted Pendulum With Damping, AJP 34(6), 533, (1966).
- F. M. Phelps, III and J. H. Hunter, Jr., Reply to Joshi's Comments on a Damping Term in the Equations of Motion of the Inverted Pendulum, AJP 34(6), 533-535, (1966).
- Douglas J. Ness, Small Oscillations of A Stabilized, Inverted Pendulum, AJP 35, 964-967, (1967).
- Herbert W. Jones, A Quick Demonstration of the Inverted Pendulum, AJP 37, 941 (1969).
- Henry P. Kalmus, The Inverted Pendulum, AJP 38, 874, (1970).
- M. M. Michaelis and T. Woodward, An inverted liquid demonstration, AJP 59, 816-821 (1991).
- B. Duschesne, C. W. Fischer, C. G. Gray, and K. R. Jeffrey, Chaos in the motion of an inverted pendulum: An undergraduate laboratory experiment, AJP 59, 987-992 (1991).
- H. J. T. Smith and J. A. Blackburn, Experimental study of an inverted pendulum, AJP 60, 909-911 (1992).
- James A. Blackburn, H. J. T. Smith and N Gronbech-Jensen, Stability and Hopf bifurcations in an inverted pendulum, AJP 60, 903-908 (1992).
- James A. Blackburn, H. J. T. Smith and N Gronbech-Jensen, Erratum: "Stability and Hopf bifurcations in an inverted pendulum [Am. J. Phys. 60, 903-908 (1992)], AJP 61, 475 (1993).
- D. J. Acheson and T. Mullin, Upside-down Pendulums, Nature, Vol 366, 215-216, Nov 18, 1993.
- D. J. Acheson, A Pendulum Theorem, Proc. Royal Society of London, A443, 239-245, (1993).
- P. N. Murgatroyd, The magnetic analogue of the inverted pendulum, AJP 62, 281-282 (1994).
- N. Alessi, C. W. Fischer, and C. G. Gray, Measurement of amplitude jumps and hysteresis in a driven inverted pendulum, AJP 60, 755-756 (1992).
- G1-57: INVERTED PENDULUM - SPEAKER - DRIVEN
- Henry P. Kalmus, The Inverted Pendulum, AJP 38, 874, (1970).
- G1-58: LOADED PENDULUM
- None.
- G1-59: BIFILAR PENDULUM
- Paul F. Bartunek, Some Interesting Cases of Vibrating Systems, AJP 24, 369-373, (1956).
- John W. Then, Bifilar Pendulum - An Experimental Study for the Advanced Laboratory, AJP 33, 545-547, (1965).
- Richard M. Sutton, An Experimental Encounter with Bifilar Pendula, AJP 21, 408, (1953).
- S. M. Lee, The Double-Simple Pendulum Problem, AJP 38, 536 (1970).
- G1-60: CHAOS - TWO BIFILAR PENDULUM
- W. Stadler, Am. J. Phys 50, 595-598 (1982).
- Stephen F. Felszeghy, On the adequacy of Newtonian particle mechanics for solving the rigid double pendulum problem, AJP 53, 230-232 (1985).
- W. Stadler, Rebuttal to "On the adequacy of Newtonian particle mechanics for solving the rigid double pendulum problem," [AJP 53, 230-232 (1985)], AJP 53, 233-234 (1985).
- Shinbrot, Grebogi, Wisdom, and Yorke, Chaos in a Double Pendulum, AJP 60, 491-499, (1992).
- Supplemental Information Sheet, T. Shinbrot, (1989).
- R. B. Levien and S. M. Tan, Double pendulum: An experiment in chaos, AJP 61, 1038-1044 (1993).
- G1-71: LISSAJOUS FIGURES - SAND PENDULUM
- Luiz Borello, New Method for Demonstrating the Addition of the Isochronous and Perpendicular Vibratory Motions, AJP 15, 93-94, (1947).
- R. H. Romer, A Double Pendulum "Art Machine," AJP 38, 1116-1121 (1970).
- Chris Chiaverina, A Laser Spirograph for Under $3, TPT 28, 606 (1990).
- Robert J. Whitaker, A note on the Blackburn pendulum, AJP 59, 330-333 (1991).
- K. David Pinkerton, Laser Light Fantastic Lissajous Figures, TPT 29, 168-169 (1991).
- O. Herrera, Mechanical Device to Draw Lissajous Figures, TPT 29, 284-285 (1991).
- Thomas B. Greenslade, Jr., All about Lissajous Figures, TPT 31, 364-370 (1993).
- Instructions for use of No. 833 Sand Pendulum.
- Lecture Demonstration Chart of Various Lissajous Figures
- Demonstration Experiments in Physics, Sand Pendulum for Compound Wave Form and Lissajous Figures.
-
- G1-72: LISSAJOUS FIGURES - X-RAY RECORDER
- None.
- G1-73: LISSAJOUS FIGURES - FOURIER SYNTHESIZER
- Frank G. Karioris, Projection Sine-Sine Grid and Lissajous Figures, TPT 13, 294-295, (1975).
- G1-74: LISSAJOUS FIGURES - LASER AND LOUDSPEAKER
- D. J. Ballegeer, J. E. Drumheller,L .D. Kirkpatrick, and M. Rugheimer, A Laser Spirograph, TPT 20, 415-418, (1982).
- John M. D'Mura, Three-Dimensional Lissajous Figures, TPT 27, 98-101, (1989).
- G1-81: OUIJA WINDMILL
- Gordon J. Aubrecht II, A Mechanical Toy: The Gee-Haw Whammy-Diddle, TPT 20, 614, (1982).
- D. P. Jax Mulder, Childredn's Toys, TPT 18, 134-135, (1980).
- Susan S. Welch, What Makes it Turn?, TPT 11, 303, (1973).
- Robert W. Leonard, An Interesting Demonstration of the Combination of Two Linear Harmonic Vibrations to Produce a Single Elliptical Vibration, AJP 5, 175-176, (1937).
- Elibabeth R. Laird, A Notched Stick, AJP 23, 472-473, (1955).
- Julius Sumner Miller, The Notched Stick, AJP 23(3), 176, (1955).
- G. David Scott, Control of the Rotor on the Notched Stick, AJP 24, 464-465, (1956).
- G1-82: PENDULUM WAVES
- Richard E. Berg, Pendulum Waves, A Demonstration of Waves Using Pendula, AJP 59, 186-187 (1991).
- W. Weiler, Physikbuch: Machs Wellenmaschine, Esslingen and Munchen: Verlag von J. F. Schreiber, (1912).
G2: RESONANCE AND COUPLED OSCILLATIONS
- G2-01: MASS ON SPRING - HAND HELD
- Shirin Haque-Copilah, Extremely simple demonstration of forced oscillation, AJP 64, 507-508 (1996).
- G2-02: FORCED HARMONIC MOTION WITH DAMPING - LARGE
- Lecture Demonstration Circuit Diagram for Motor Speed Control.
- F. Bueche and C. Pavelka, An Advanced Undergraduate Laboratory Experiment for Studying the Motion of Forced Vibration, AJP 32, 857-859 (1964).
- Sema'an I. Salem and Earl R. Ault, Mechanical Resonance (Experiment), AJP 32, 914-915 (1964).
- H. L. Armstrong, The Oscillating Spring and Weight - An Experiment Often Misinterpreted, AJP 37, 447-449 (1969).
- Gaylord T. Hageseth, Forced Oscillations and Magnetic Resonance in the Introductory Laboratory, AJP 37, 529-531 (1969).
- James E. Gilson and Olaf A. Boedtker, A Damped Harmonic Motion Experiment for Use in Undergraduate General Physics Laboratories, AJP 37, 1157-1158 (1969).
- William A. Jeffers, Jr., Phase Diagrams for the Overdamped Oscillator, AJP 39, 1210-1212 (1971).
- G. M. Gruber and E. E. Baart, Laboratory experiment on forced linear oscillations, AJP 43, 926-927 (1975).
- Mildred Allen and Erwin J. Saxl, The Period of Damped Simple Harmonic Motion, AJP 40, 942-944 (1972).
- John D. Garrison, On the Solution of the Equation for Damped Oscillation, AJP 42, 694-695 (1974).
- Frank S. Crawford, Damping of a simple pendulum, AJP 43, 276-277 (1975).
- John D. Garrison, Erratum: "On the Solution of the Equation for Damped Oscillation," [Am. J. Phys. 42, 694-695 (1974)], AJP 43, 463 (1975).
- J. Morris Blair, Precision timing applied to a driven mechanical oscillator, AJP 43, 1076-1078 (1975).
- S. Balasubramanian and R. Fatehally, Comment on "On the solution of the equation for damped oscillation," AJP 44, 705 (1976).
- J. Morris Blair, Erratum: "Precision timing applied to a driven mechanical oscillator," J. Morris Blair, [Am. J. Phys. 43, 1076-1078 (1975)], AJP 44, 187 (1976).
- G. Bonera, C. I. Massara, and M. Villa, Simple experimental introduction to harmonic oscillations, AJP 44, 1121-1123 (1976).
- Mark A. Heald, How do you know when you've got critical damping?, AJP 46, 989-993 (1978).
- P. G. L. Leach, Note on the time-dependent damped and forced harmonic oscillator, AJP 46, 1247-1249 (1978).
- Erhard Feige, Thomas B. Clegg, and John W. Poulton, A new optical transducer to measure damped harmonic motion, AJP 51, 954-955 (1983).
- Carl Barratt, Resonance in a vibrating spring, AJP 52, 1148-1150 (1984).
- J. L. Hunt, Forced and damped harmonic oscillator experiment using an accelerometer, AJP 53, 278-279 (1985).
- James A. Blackburn, S. Vik, and Binruo Wu, Driven pendulum for studying chaos, Rev. Sci. Instrum. 60, 422-426 (1989).
- E. Marega, Jr., L. Ioriatti, and S. C. Zilio, Harmonic generation and chaos in an electromechanical pendulum, AJP 59, 858-859 (1991).
- Lorenzo Basano and Pasquale Ottonello, Digital pendulum damping: The single-oscillation approach, AJP 59, 1018-1023 (1991).
- Delmar Permann and Ian Hamilton, Self-similar and erratic transient dynamics for the linearly damped simple pendulum, AJP 60, 442-450 (1992).
- W. Herreman, The Transient Phenomena of Forced Vibrations, TPT 29, 187-188 (1991).
- R. L. Kautz, Chaos in a computer-animated pendulum, AJP 61, 407-415 (1993).
- William B. Case, Time-delay oscillator and instability: A demonstration, AJP 62, 227-230 (1994).
- Lawrence Ruby, Comment on "Chaos in a computer-animated pendulum," by R. L. Kautz [Am. J. Phys. 61, 407-415 (1993)], AJP 62, 472 (1994).
- F. L. Curzon, A. L. H. Loke, M. E. Lefrancois, and K. E. Novik, Parametric instability of a pendulum, AJP 63, 132-136 (1995).
- Randall D. Peters, Resonance response of a moderately driven rigid planar pendulum, AJP 64, 170-173 (1996).
- G2-03: RESONANCE IN TORSIONAL PENDULUM - PROJECTION
- Instruction Manual, Cat. No. 11 1124, Klinger Scientific Co., Jamaica, NY.
- Lecture Demonstratio Data Sheet: Amplified vs. Motor Voltage
- G2-04: DAMPED OSCILLATIONS
- P. H. Miller, Jr., On Quantitative Measurement of a "Two-Minute" Egg, AJP 24, 581, (1956).
- Frank S. Crawford, Damping of a simple pendulum, AJP 43, 276-277 (1975).
- G2-05: AIR TRACK - DRIVEN AND DAMPED OSCILLATIONS
- Thomas B. Greenslade, Jr., TPT Notes: Damped Simple Harmonic Motion on a Linear Air Track, TPT 7, 395-396, (1969).
- Rebecca A. Koopmann and S. Maleki, Physics on an Air Track, TPT 27, 112-115, (1989).
- G2-06: FRAHM'S FREQUENCY METER
- None.
- G2-07: PSYCHOACOUSTIC VIBRATION TRANSDUCER
- Lecture Demonstration Analysis Sheet.
- G2-08: DRIVEN NON-LINEAR OSCILLATOR
- Lecture-Demonstration data sheet and graph for our setup.
- Donald P. Stockard, Tracy L. Johnson, and Francis W. Sears, Study of Amplitude Jumps, AJP 35, 961-963 (1967).
- J. N. Fox and J. J. Arlotto, Demonstration Experiment Using a Dissectable Aharmonic Oscillator, AJP 36, 326-330 (1968).
- James A. Warden, Demonstration of Amplitude Jumps, AJP 38, 773-774 (1970).
- John Thomchick and J. P. McKelvey, Anharmonic vibrations of an "ideal" Hooke's law oscillator, AJP 46, 40-45 (1978).
- H. J. Janssen, R. Serneels, L. Beerden, and E. L. M. Flerackers, Experimental demonstration of the resonance effect of an anharmonic oscillator, AJP 51, 655-658 (1983).
- E. L. M. Flerackers, H. J. Janssen, and L. Beerden, Piecewise linear
anharmonic LRC circuit for demonstrating "soft" and "hard" spring
nonlinear resonant behavior, AJP 53, 574-577 (1985).
- Thomas W. Arnold and William Case, Nonlinear effects in a simple mechanical system, AJP 50, 220-224 (1982).
- William Case, Parametric instability: An elementary demonstration and discussion, AJP 48, 218-221 (1980).
- Andrea Prosperetti, Subharmonics and ultraharmonics in the forced oscillations of weakly nonlinear systems, AJP 44, 548-554 (1976).
- Ralph Baierlein: Newtonian Dynamics, Duffing's Equation without Damping, pp. 82, 86-87.
- Nicholas B. Tufillaro, Nonlinear and chaotic string vibrations, AJP 57, 408-414 (1989).
- Ian R. Gatland, Theory of a nonharmonic oscillator, AJP 59, 155-158 (1991).
- Collin L. Olson and M. G. Olsson, Dynamical symmetry breaking and chaos in Duffing's equation, AJP 59, 907-911 (1991).
- Roset Khosropour and Peter Millet, Demonstrating the bent tuning curve, AJP 60, 429-432 (1992).
- N. Alessi, C. W. Fischer, and C. G. Gray, Measurement of amplitude jumps and hysteresis in a driven inverted pendulum, AJP 60, 755-756 (1992).
- Robert H. Romer, Reading the equations and confronting the phenomena - The delights and dilemmas of physics teaching, AJP 61, 128-142 (1993). (See pp. 138-139).
- K. Weltner, A. S. C. Esperidiao, R. F. S. Andrade, and G. P. Guedes, Demonstrating different forms of the bent tuning curve with a mechanical oscillator, AJP 62, 56-59 (1994).
- R. Dorner, L. Kowalski, and M. Stein, A nonlinear mechanical
oscillator for physics laboratories, AJP 64, 575-580 (1996).
- G2-09: FORCED HARMONIC MOTION WITH SONAR
- None.
- G2-11: RESONANT SAW BLADES - HAND DRIVEN
- None.
- G2-21: COUPLED PENDULA
- Apparatus Description, Cat. No. 84915 Resonance Pendulums, Central Scientific Co., Chicago, Ill.
- Leonard O. Olsen, Coupled Pendulums: An Advanced Laboratory Experiment, AJP 13, 321-324, (1945).
- Luiz Borello, New Method for Demonstrating the Addition of Two Isochronous and Perpendicular Vibratory Motions, AJP 15, 93-94, (1947).
- C. R. Kannewurf and Harald C. Jensin, Coupled Oscillations, AJP 25, 442-445, (1957).
- F. Bueche and C. Pavelka, An Undergraduate Laboratory Experiment for Studying the Motion of Coupled Mechanical Systems, AJP 32, 226-228, (1964).
- Monte M. Giles, A Resonance Demonstration, TPT 12, 178-179, (1974).
- Jearl Walker, The Amateur Scientist: Strange things happen when two pendulums interact through a variety of interconnections, Scientific America, Volume 253 #4, October 1985.
- Pau Chagnon, Deck the Halls: Animated Displays: Coupled Mechanical Oscillators, TPT 30, 275-279 (1992).
- H. Ric Blacksten, Apparatus for Teaching Physics: Exploring Resonance Phenomena, TPT 32, 554-555 (1994).
- Georg Hansen, Ove Harang, and Richard J. Armstrong, Coupled
oscillators: A laboratory experiment, AJP 64, 656-660 (1996).
- G2-22: BAR - COUPLED PENDULA
- J. Morris Blair, Laboratory Experiments Involving the Two-Mode Analysis of Coupled Oscillators, AJP 39, 555-557 (1971).
- Joseph Priest and James Poth, Teaching Physics with Coupled Pendulums, TPT 20, 80, (1982).
- G2-23: SPRING - COUPLED PHYSICAL PENDULA
- None.
- G2-24: COUPLED PENDULA - 100 TO 1 MASS RATIO
- J. -P. Richard, Approaching the Quantum Limit with Optically Instrumented Multimode Gravitational-Wave Bar Detectors, Physical Review D (Particles, Fields, Gravitation, and Cosmology),
Vol 46, Third Series, No. 6, 15 Sept. (1992).
- G2-25: COUPLED PENDULA - 1000:100:10:1 MASS RATIO
- See G2-24.
- G2-26: COUPLED AIR TRACK GLIDERS
- Novel Experiments in Physics: Coupled Linear Oscillator, University of Minnesota - Duluth.
- Franklin Miller, Jr., A Laboratory Experiment With Coupled Linear Oscillators, AJP 20, 23-25, (1952).
- James D. Louck, Exact Normal Modes of Oscillation of a Linear Chain of Identical Particles, AJP 30, 585-590, (1962).
- Henry S. C. Chen, Coupled Oscillators and Normal Coordinates, AJP 35, 924-926, (1967).
- David L. Wallach, et al, The Effect of the Mass of the Center spring in One-dimensional coupled harmonic oscillators, AJP 56, 1120-1123, (1988).
- Rebecca A. Koopman and S. Maleki, Physics on an Air Track, TPT 27, 112-115, (1989).
- Norris W. Preyer, The Coupled Harmonic Oscillator: Not Just for Seniors Anymore, TPT 34, 52-55 (1996).
- J. J. Brehm, Features of a nonlinear normal-mode problem, AJP 64,
935-944 (1996).
- P. A. DeYoung, D. LaPointe, J. Levy, and W. Lorenz, Nonlinear coupled
oscillators and Fourier transforms: An advanced undergraduate laboratory,
AJP 64, 898-902 (1996)
- G2-27: COUPLED SERIES MASSES HANGING ON SPRINGS
- William Pong, Principal Frequencies of a Double Spring-Mass System, AJP 21, 546-548, (1953).
- Henry S. C. Chen, Note on the Principal Frequencies of a Double Spring-Mass System, AJP 25, 311-312, (1957).
- G2-28: PENDULA WITH VARIABLE DRIVER
- None.
- G2-41: WILBERFORCE PENDULUM
- Apparatus Description and Directions for Cat. No. 75495 Wilburforce Loaded Spring, Central Scientific Co., Chicago, Ill.
- Apparatus Description and Directions for Use, Wilberforce Pendulum, Leybold-Heraeus, Fed. Rep. of Germany.
- Advertisement for "Super Spinnerama," Small Wilbueiral Spring, The Fifth Series, Vol. Philosophical Magazine 38, 386-392, (1894).
- Mr. John Coenraads, Wilberforce Pendulum, Idea Bank Collation, Idea No. 97.
- Richard M. Sutton, ed., Demonstration Experiments in Physics, McGraw-Hill, 135, (1938).
- Arnold Sommerfeld, Mechanics of Deformable Bodies, Academic Press, New York, (1950).
- Zeitschrift Fur Angew, Zur Theorie der Schraubenfeder, Physik 5, 260-267, (1953).
- Reuben Benumof and Mitchel Benumov, Shearing Stress in a Closely Coiled Helical Spring, AJP 21, 62-63, (1953).
- Ronald Gabelle, Statics and Dynamics of a Helical Spring, AJP 26, 287-290, (1958).
- Ernesto E. Galloni and Mario Kohen, Influence of the Mass of the Spring on Its Static and Dynamic Effect, AJP 47, 1076-1078, (1979).
- G. D. Frier and F. J. Anderson, Mx-1. Wilburforce Pendulum, A Demonstration Handbook for Physics, p. M-61, (1981).
- Jim Williams and Rudy Keil, Doing Physics- Physics Activities for Groups, TPT 21, 257, (1983).
- Ulrich Kopf, Wilberforce's Pendulum Revisited, AJP 58, 833-837, (1990).
- Richard E. Berg and Todd S. Marshall, Wilberforce Pendulum and Normal
Modes, AJP 59(1), 32-38, Jan (1991).
- Frank G. Karioris, Apparatus for Teaching Physics: Wilberforce Pendulum, Demonstration Size, TPT 31, 314-315 (1993).
- G2-42: ELASTIC PENDULUM
- Lecture-Demonstration Supplemental Information Sheet: Coupled Spring-Pendulum.
- Milani Technical Services, Real- time Simulation Software Programs for Harmonic Motion Studies..., Greenville, Pa.
- M. M. Gordon, The Nonlinear Coupling Resonance Exhibited by an Elastic Pendulum, Michigan State University Cyclotron Laboratory Internal Report (1962).
- A. Dobrovolskis, Rubber Band Pendulum, AJP 41(9), 1103-1106, (1973).
- Allen L. King, Oscillations of a Loaded Rubber Band, AJP 42(8), 699-701, (1974).
- M. G. Olsson, Why Does a Mass on a Spring Sometimes Misbehave?, AJP
44(12), 1211, (1976).
- Thomas E. Cayton, The laboratory spring-mass oscillator: an example of parametric instability, AJP 45, 723-732 (1977).
- J. G. Lipham and V. L. Pollak, Constructing a "misbehaving" spring,
AJP 46, 110-111 (1978).
- M. G. Rusbridge, Motion of the Spring Pendulum, AJP 48, 146-151, (1980).
- William Case, Parametric Instability: An Elementary Demonstration and Discussion, AJP 48, 218-221, (1980).
- J. Williams and R. Keil, Doing Physics: Elastic Pendulum, TPT 21, 257, (1983).
- H. M. Lai, On the Recurrence Phenomenon of a Resonant Spring Pendulum, AJP 52(3), 219-223, (1984).
- Angus Scott, Transfer of Energy in a Spring-Mass Pendulum, TPT 23, 356, (1985).
- Walter Roy Mellon, Spring String Swing Thing, TPT 32, 122-123 (1994).
- D. M. Davidovic, B. A. Anicin, and V. M. Babovic, The libration limits of the elastic pendulum, AJP 64, 338-342 (1996).
G3: MECHANICAL WAVES - ONE- DIMENSIONAL
- G3-01: SHIVE WAVE MACHINE - TRAVELING WAVES
- B. A. Burgel, Dispersion, Reflection, and Eigenfrequencies on the Wave Machine, AJP 35, 913-915, (1967).
- Thomas B. Greenslade, Jr., 19th Century Wave Machines, TPT 18, 510-517, (1980).
- John N. Shive, Similarities In Wave Behavior, Bell Laboraties, (1961).
- Instructions For Use, 16-1208 Shive Wave Drive Motor, Ealin Corp., South Natick, MA.
- G3-02: SHIVE WAVE MACHINE - SUPERPOSITION OF PULSES
- B. A. Burgel, Dispersion, Reflection, and Eigenfrequencies on the Wave Machine, AJP 35, 913-915, (1967).
- Thomas B. Greenslade, Jr., 19th Century Wave Machines, TPT 18, 510-517, (1980).
- John N. Shive, Similarities In Wave Behavior, Bell Laboraties, (1961).
- Instructions For Use, 16-1208 Shive Wave Drive Motor, Ealin Corp., South Natick, MA.
- G3-03: SHIVE WAVE MACHINE - REFLECTION OF PULSES
- B. A. Burgel, Dispersion, Reflection, and Eigenfrequencies on the Wave Machine, AJP 35, 913-915, (1967).
- Thomas B. Greenslade, Jr., 19th Century Wave Machines, TPT 18, 510-517, (1980).
- John N. Shive, Similarities In Wave Behavior, Bell Laboraties, (1961).
- Instructions For Use, 16-1208 Shive Wave Drive Motor, Ealin Corp., South Natick, MA.
- G3-04: SHIVE WAVE MACHINE - STANDING WAVES
- B. A. Burgel, Dispersion, Reflection, and Eigenfrequencies on the Wave Machine, AJP 35, 913-915, (1967).
- Thomas B. Greenslade, Jr., 19th Century Wave Machines, TPT 18, 510-517, (1980).
- John N. Shive, Similarities In Wave Behavior, Bell Laboraties, (1961).
- Instructions For Use, 16-1208 Shive Wave Drive Motor, Ealin Corp., South Natick, MA.
- G3-05: SHIVE WAVE MACHINE - PARTIAL REFLECTIONS
- B. A. Burgel, Dispersion, Reflection, and Eigenfrequencies on the Wave Machine, AJP 35, 913-915, (1967).
- Thomas B. Greenslade, Jr., 19th Century Wave Machines, TPT 18, 510-517, (1980).
- John N. Shive, Similarities In Wave Behavior, Bell Laboraties, (1961).
- Instructions For Use, 16-1208 Shive Wave Drive Motor, Ealin Corp., South Natick, MA.
- G3-06: SHIVE WAVE MACHINE - IMPEDENCE MATCHING
- B. A. Burgel, Dispersion, Reflection, and Eigenfrequencies on the Wave Machine, AJP 35, 913-915, (1967).
- Thomas B. Greenslade, Jr., 19th Century Wave Machines, TPT 18, 510-517, (1980).
- John N. Shive, Similarities In Wave Behavior, Bell Laboraties, (1961).
- Instructions For Use, 16-1208 Shive Wave Drive Motor, Ealin Corp., South Natick, MA.
- G3-07: SHIVE WAVE MACHINE - TAPERED TRANSFORMER
- B. A. Burgel, Dispersion, Reflection, and Eigenfrequencies on the Wave Machine, AJP 35, 913-915, (1967).
- Thomas B. Greenslade, Jr., 19th Century Wave Machines, TPT 18, 510-517, (1980).
- John N. Shive, Similarities In Wave Behavior, Bell Laboraties, (1961).
- Instructions For Use, 16-1208 Shive Wave Drive Motor, Ealin Corp., South Natick, MA.
- G3-08: SHIVE WAVE MACHINE - FABRY-PEROT INTERFEROMETER
- B. A. Burgel, Dispersion, Reflection, and Eigenfrequencies on the Wave Machine, AJP 35, 913-915, (1967).
- Thomas B. Greenslade, Jr., 19th Century Wave Machines, TPT 18, 510-517, (1980).
- John N. Shive, Similarities In Wave Behavior, Bell Laboraties, (1961).
- Instructions For Use, 16-1208 Shive Wave Drive Motor, Ealin Corp., South Natick, MA.
- G3-09: SHIVE WAVE MACHINE - FREQUENCY FILTERING
- B. A. Burgel, Dispersion, Reflection, and Eigenfrequencies on the Wave Machine, AJP 35, 913-915, (1967).
- Thomas B. Greenslade, Jr., 19th Century Wave Machines, TPT 18, 510-517, (1980).
- John N. Shive, Similarities In Wave Behavior, Bell Laboraties, (1961).
- Instructions For Use, 16-1208 Shive Wave Drive Motor, Ealin Corp., South Natick, MA.
- G3-10: SHIVE WAVE MACHINE - BRANCHING
- B. A. Burgel, Dispersion, Reflection, and Eigenfrequencies on the Wave Machine, AJP 35, 913-915, (1967).
- Thomas B. Greenslade, Jr., 19th Century Wave Machines, TPT 18, 510-517, (1980).
- John N. Shive, Similarities In Wave Behavior, Bell Laboraties, (1961).
- Instructions For Use, 16-1208 Shive Wave Drive Motor, Ealin Corp., South Natick, MA.
- G3-11: SHIVE WAVE MACHINE - RESONANCE ABSORPTION
- B. A. Burgel, Dispersion, Reflection, and Eigenfrequencies on the Wave Machine, AJP 35, 913-915, (1967).
- Thomas B. Greenslade, Jr., 19th Century Wave Machines, TPT 18, 510-517, (1980).
- John N. Shive, Similarities In Wave Behavior, Bell Laboraties, (1961).
- Instructions For Use, 16-1208 Shive Wave Drive Motor, Ealin Corp., South Natick, MA.
- G3-21: TRANSVERSE WAVE ON A LONG STRING
- None.
- G3-22: VELOCITY OF TRANSVERSE WAVE ALONG ROPE
- None.
- G3-23: TRANSVERSE WAVES ON A LONG SPRING - FREE END
- None.
- G3-24: SLINKY ON LECTURE TABLE - TRAVELING WAVES
- None.
- G3-25: SLINKY ON LECTURE TABLE - IMPEDANCE MISMATCH
- None.
- G3-26: AIR TRACK - LONGITUDINAL WAVES
- D. K. Chaturvedi and J. S. Baijal, Normal Modes of Oscillation for a One-Dimensional Diatomic Lattice, AJP 42, 482486 (1972).
- G3-27: AIR TABLE - TRANSVERSE AND LONGITUDINAL WAVES
- None.
- G3-28: SUSPENDED SLINKY
- T. W. Edwards and R. A. Hultsch, Mass Distribution and Frequencies of a Vertical Spring, AJP 40, 445-449 (1972).
- John F. Spivey, Versatile Mount for Slinky Wave Demonstrator, TPT 20, 52, (1982).
- Carl Barratt, Resonance in a Vibrating Spring, AJP 52, 1148-1150, (1984).
- Guy Vandegrift, T. Baker, J. DiGrazio, A. Dohne, A. Flori, R. Loomis, C. Steel, and D. Velat, Wave Cutoff on a Suspended Slinky, AJP 57, 949-951, (1989).
- Monica Silva Santos, Eduardo Soares Rodrigues, and Paulo Murilo Castro de Oliveira, Spring-mass chains: Theoretical and experimental studies, AJP 58, 923-928 (1990).
- E. N. Martinez, Effective mass of a classical linear chain, AJP 61, 1102-1110 (1993).
- Apparatus Description, 16-1208 Shive Wave Drive Motor, Ealing Corp., South Natick, MA.
- G3-29: SUSPENDED SLINKY - PORTABLE
- None.
- G3-41: WAVE MODEL - PROJECTION
- Apparatus Description.
- Richard M. Sutton, ed., Models of Wave Motion, Demonstration Experiments in Physics, 138.
- G3-42: TORSIONAL WAVES
- Instructions Sheet: Torsional Apparatus for Studying Waves, Leybold Cat. No. 40110., Germany.
- Thomas B. Greenslade, Jr., Apparatus for Teaching Physics: Transverse Wave Machine, TPT 27, 508-509 (1989).
- G3-43: WHIP
- Jearl Walker, Th Flying Circus of Physics WITH ANSWERS, Section 1.77 Whip Crack, and references therein.
- David T. Deihl and F. Roy Carlson, Jr., "N Waves" from Bursting Balloons, AJP 36, 441-444 (1968).
- Nicolas Lee, Spence Allen, Elizabeth Smith, and Loren M. Winters, Does the Tip of a Snapped Towel Travel Faster than Sound?, TPT 31, 376-377 (1993).
- G3-44: WAVE-DRIVEN BUMPER JACK
- None.
- G3-45: RESONANCE OF WIRES
- None.
- G3-46: STANDING WAVES IN A WIRE LOOP
- Standing Waves in a Circle, AJP 33(10), 14, (1965).
- G3-51: ROPE WAVE GENERATOR - FREQUENCY VS. WAVELENGTH
- Lecture Demonstrations Instruction Sheet: Suggested Uses for the Wave Generator.
- G3-52: ROPE WAVE GENERATOR - ROPE TENSION VS. WAVELENGTH
- None.
- G3-53: STANDING WAVES IN A STRING
- Thomas D. Rossing, Normal modes of a compound string, AJP 43, 735-736 (1975).
- John A. Elliott, Nonlinear resonance in vibrating strings, AJP 50, 1148-1150 (1982).
- John Abendschan and Dick Speakman, Apparatus for Teaching Physics: Laser-Enhanced Vibrating String, TPT 29, 114-115 (1991).
- H. P. W. Gottlieb, Letter: On traveling, vibrating strings (threadlines), AJP 60, 13 (1992).
- Jon C. Luke, The motion of a stretched string with zero relaxed length in a gravitational field, AJP 60, 529-532 (1992).
- Samantha Parmley, Tom Zobrist, Terry Clough, Anthony Perez-Miller, Mark Makela, and Roger Yu, Vibrational properties of a loaded string, AJP 63, 547-553 (1995).
- Ira M. Freeman, Acoustic Behavior of a Rubber String, AJP 26, 369-371
(1958).
G4: MECHANICAL WAVES - TWO- DIMENSIONAL
- G4-01: RIPPLE TANK - PORTABLE
- Apparatus Description: 16-100 Ealing Ripple Tank, Ealing Corp.
- Lecture Demonstration Records Form.
- G4-02: RIPPLE TANK
- Clarence A. Dyer, The Stroboscopic Ripple Tank as a teachi Aid, AJP 5, 208-210, (1937).
- Clifton Bob Clark, Speed of Straight Waves in a Ripple Tank, AJP 27, 478-483, (1959).
- H. D. Keith, Simplified Theory of Ship Waves, AJP(25), 466-474, (1957).
- Marvin Ohriner, Parabolas in a Ripple Tank, TPT 339, (1967).
- Norman E. Anderson, Ripple Tank Photography, TPT 8, 202-203, (1970).
- Robert W. Smith, Ripple Tank Projection With Improved Contrast, TPT 10, 533, (1972).
- William Allen Barwick, Jr., A "Flaw" in the Ripple Tank Wave Model Of Light, TPT 9, 456-457, (1971).
- Cordell, Kligman, Mann, Mosca, Mullady, A Comparative Evaluation of Ripple Tanks, TPT 8, 205-208, (1970).
- Yu Hao, Xie Qi-Cheng, Li Zhen-Di, A Ripple Tank Demonstration of the Conditions for Interference of Waves, AJP 56(8), 745-746, (1988).
- Richard A. Secco, Wave Interference Patterns Displayed on the Overhead Projector, TPT 29, 284 (1991).
- G4-03: RIPPLE TANK - DOPPLER EFFECT
- Apparatus Description and Instructions Guide: 2401 RippleTank, Raytheon, Macalaster Scientific Co., Nasua, NH, (1969).
- G4-11: SOAP FILM OSCILLATIONS
- Marvin Ohriner, Spectacular Bubbles, TPT 7, 456, (1969).
- Bernard Sharkey, Soap Films, TPT 3, 67, (1965).
- G4-12: STANDING WAVES ON A SOAP FILM
- David T. Kagan and Louis J. Buchholtz, Demonstrations of normal modes on a bubble membrane, AJP 59, 376-377 (1991).
- G4-13: DRUM HEAD - STANDING WAVES
- None.
- G4-21: CHLADNI FIGURES - BOWED
- Robert H. Johns, Bow for Vibrating Plates, TPT 12, 500-501, (1974).
- A. T. Jones, Sound (van Nostrand, New York) 172-180, (1937).
- The Amateur Scientist, About Experiments with Sound for the High-Fidelty Enthusiast, Scientific American 194(1), 120-122, (Jan. 1956).
- G4-22: CHLADNI FIGURES - OSCILLATOR DRIVEN
- Harald C. Jensen, Production of Chladni Figures, AJP 25, 203, (1957).
- W. M. Pierce, Chladni Plate Figures, AJP 19, 436, (1951).
- Harald C. Jensen, Production of Chladni Figures on Vibrating Plates Using Continuous Excitation, AJP 23, 503-505, (1955).
- E. R. Pinkston, Lecture Demonstration of Nodal Patterns, AJP 14, 138, (1946).
- Mary D. Waller, Interpreting Chladni Figures, AJP 25, 157-158, (1957).
- Julius Sumner Miller, Some Observations on Chladni Figures, AJP 18, 534, (1950).
- E. R. Pinkston and L. A. Crum, Lecture Demonstrations in Acoustics, JASA 55, 2-6, (1974).
- Thomas D. Rossing and Daniel A. Russell, Laboratory observation of elastic waves in solids, AJP 58, 1153-1162 (1990).
- P. J. Ouseph, APPARATUS AND DEMONSTRATION NOTES: Chladni plates for overhead projectors, AJP 59, 665-666 (1991).
- Lecture Demonstrations: Violin Plate, Blueprint.
- Lecture Demonstrations Data for Nickel Tubing and Drive Coil.
- G4-31: MOIRE PATTERNS
- None.
- G4-32: MOIRE PATTERNS - COLOR
- Milton Stecher, The Moire Phenomenon, AJP 32, 247-257, (1964).
- Bruce Bernero, The Moire Effect in Physics Teaching, TPT 27
- G4-33: GROUP VELOCITY - TRANSPARANCIES
- Robert Katz, Group-Phase Velocity Demonstrator, AJP 21, 388-389 (1953).
- Eric Mendoza, Storm at Sea - An Illustration of Group Velocity, AJP
22, 208-211 (1954).
- P. T. Demos, Device for the Visual Presentation of Group Velocity,
AJP 25, 383-384 (1957).
- N. F. Barber, Phase Velocity and Group Velocity, AJP 27, 120 (1959).
- J. Mawdsely, Demonstrating Phase Velocity and Group Velocity, AJP 37,
842-843 (1969).
- John Coenraads, notes: Phase and group velocity, TPT 11, 36-37 (1973).
- G4-41: SOLITONS
- Instruction sheet for operation of the soliton demonstrator.
- P. J. Hansen and D. R. Nicholson, Simple soliton solutions, AJP 47,
769-771 (1979).
- Beverley A. P. Taylor, What is a solitary wave?, AJP 47, 847-850 (1979).
- Alessandro Bettini, Tullio A. Minelli, and Donatella
Pascoli, Solitons in undergraduate laboratory, AJP 51, 977-984 (1983).
- M. Olsen, H. Smith, and A. C. Scott, Solitons in a wave tank, AJP 52,
826-830 (1984).
- J. Gratton and R. Delellis, An elementary introduction to solitons,
AJP 57, 683-687 (1989).
- Erik Winkler and Junru Wu, An experiment to study localized
excitations - Nonpropagating hydrodynamic solitons, AJP 58, 1100-1104 (1990).
- W. Malfliet, Solitary wave solutions of nonlinear wave equations,
AJP 60, 650-654 (1992).
- C. C. Yan, Soliton like solutions of the Schroedinger equation for
simple harmonic oscillator, AJP 62, 147-151 (1994).